Year 3 Maths Planning - Summer 1 (Lessons 1 to 10) - Number system and Calculating

Week	Day	Mental starter	Learning objective	Differentiation	Activity
1	Mon	To be able to add multiples of 10 to a number	To be able to use column addition to add two numbers	LA - add 1-digit numbers to 2-digit numbers MA - add 2-digit numbers HA - add 3-digit numbers G+T - add 4-digit numbers and decimals	Chn to use following layout only:
	Tue	To be able to add multiples of 100 to a number	To be able to use column addition to add several numbers	LA - add 1-digit numbers to 2-digit numbers MA - add 2-digit numbers HA - add 3-digit numbers G+T - add 4-digit numbers and decimals	Children who were insecure on adding two numbers in columns to work on this again
	Wed	To be able to subtract multiples of 10 from a number	To be able to use column subtraction (no zeros in top numbers)	LA - subtract 1-digit numbers / multiples of 10 MA - subtract 2-digit numbers HA - subtract 3-digit numbers G+T - subtract 4-digit numbers and decimals	Chn to use following layout only:
	Thu	To be able to subtract multiples of 100 from a number	To be able to use column subtraction (with zeros in top numbers)	LA - subtract 1-digit numbers / multiples of 10 MA - subtract 2-digit numbers HA - subtract 3-digit numbers $\mathrm{G}+\mathrm{T}$ - subtract 4-digit numbers and decimals	Chn who were insecure on subtracting in columns with no zeros in the top numbers to work on this again
	Fri	To be able to add and subtract multiples of 10 to / from a number	Column addition and subtraction (without partitioning and with carrying and borrowing)	LA $-+\&-1$-digit numbers / multiples of 10 MA - + \& -2-digit numbers HA - + \& - 3-digit numbers G+T - + \& - 4-digit numbers and decimals	Chn to use following layout only:

[^0]| Week | Day | Mental starter | Learning objective | Differentiation | Activity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | Mon | To know facts for multiplying and dividing by 2 | To understand multiplication and division as arrays and as inverses | $\begin{aligned} & \text { LA - X \& } \div \text { by } 2,5 \text { and } 10 \\ & \text { MA }- \text { X \& } \div \text { by } 6,7,8 \text { and } 9 \\ & \text { HA - use known facts to calculate with } \\ & \text { decimal places } \\ & G+T-\text { calculate area and perimeter } \end{aligned}$ | Chn to derive 4 related multiplication and division sentences from an array e.g. 2 X $\begin{aligned} & 4=8,4 \times 2=8,8 \div 4=2 \text { and } 8 \div \\ & 2=4 \end{aligned}$ |
| | Tue | To know facts for multiplying and dividing by 5 | To be able to divide with remainders | LA - divide by 2, 5 and 10
 MA - divide by 3,4 and 6
 HA - divide by 7,8 and 9
 G+T - express quotients as fractions | Chn to calculate divisions with remainders on number lines $\mathrm{G}+\mathrm{T}$ - express quotients as fractions e.g. $5 \div 2=21 / 2$ |
| | Wed | To know facts for multiplying and dividing by 3 | To be able to round remainders up or down depending on context | LA - divide by $2,5 \& 10$ (no rounding)
 MA - divide by $2,5 \& 10$ (w/rounding)
 HA - divide by 2 to 10 (w/rounding)
 $\mathrm{G}+\mathrm{T}$ - solve ratio word problems | Chn to solve rounding up or down remainders problems $\mathrm{G}+\mathrm{T}$ - solve word problems involving scaling up or down |
| | Thu | To know facts for multiplying and dividing by 4 | To be able to multiply and divide by 10 and 100 | LA - multiply and divide by 10 \& 100
 MA - also by 1,000
 HA - also with decimal places | Chn to multiply numbers by 10 , 100 or 1,000 |
| | Fri | To know facts for multiplying and dividing by 6 | To be able to use strategies to solve problems | LA - one-step, operation given
 MA - one-step, operation not given
 HA - two-step, operation not given
 Ext - make up own examples | Chn to solve function machine problems e.g. $? \sqrt{x 3} 15$ |

[^0]: © www.SaveTeachersSundays.com 2013

